AI models invariably encounter ambiguous situations that they struggle to respond to with instructions alone. That’s problematic for autonomous agents tasked with, say, navigating an apartment, because they run the risk of becoming stuck when presented with several paths.

To solve this, researchers at Amazon’s Alexa AI division developed a framework that endows agents with the ability to ask for help in certain situations. Using what’s called a model-confusion-based method, the agents ask questions based on their level of confusion as determined by a predefined confidence threshold, which the researchers claim boosts the agents’ success by at least 15%.

“Consider the situation in which you want a robot assistant to get your wallet on the bed … with two doors in the scene and an

Read More At Article Source | Article Attribution