How a viral toxin may exacerbate severe COVID-19 – UC Berkeley

by | Dec 9, 2022 | COVID-19

In a new study, University of California, Berkeley, researchers find that portions of the SARS-CoV-2 “spike” protein, shown in the foreground, can damage the cell barriers that line the inside of blood vessels, contributing to some of COVID-19’s most dangerous symptoms, including acute respiratory distress syndrome (ARDS). (National Institutes of Health photo via Flickr)
A study published today in the journal Nature Communications reveals how a viral toxin produced by the SARS-CoV-2 virus may contribute to severe COVID-19 infections.
The study shows how a portion of the SARS-CoV-2 “spike” protein can damage cell barriers that line the inside of blood vessels within organs of the body, such as the lungs, contributing to what is known as vascular leak. Blocking the activity of this protein may help prevent some of COVID-19’s deadliest symptoms, including pulmonary edema, which contributes to acute respiratory distress syndrome (ARDS).
“In theory, by specifically targeting this pathway, we could block pathogenesis that leads to vascular disorder and acute respiratory distress syndrome without needing to target the virus itself,” said study lead author Scott Biering, a postdoctoral scholar at the University of California, Berkeley. “In light of all the different variants that are emerging and the difficulty in preventing infection from each one individually, it might be beneficial to focus on these triggers of pathogenesis in addition to blocking infection altogether.”
While many vaccine skeptics have stoked fears about potential dangers of the SARS-CoV-2 spike protein — which is the target of COVID-19 mRNA vaccines — the researchers say that their work provides no evidence that the spike protein can cause symptoms in the absence of viral infection. Instead, their study suggests that th …

Article Attribution | Read More at Article Source

Share This