Highly precise atomic clocks could soon get even better. Here’s how

by | Apr 29, 2024 | Science

The use of a special type of atom could make even the most advanced atomic clocks more precise, scientists believe.If confirmed, this breakthrough that could lead to more accurate GPS systems and better atomic clocks for use in space travel — it could even lead to devices that can detect earthquakes and volcanic eruptions with a higher level of accuracy. And fascinatingly, one of the researchers behind the development has a familiar name, based on a fitting family legacy rooted in the cutting edge of atomic science: Eliot Bohr. He’s Neils Bohr’s great-grandson.Related: Atomic clocks on Earth could reveal secrets about dark matter across the universeOf all the units humanity uses for measurement, the most precisely defined is the second, a fundamental unit of time. Crucial to this and all types of time measurements throughout history are different kinds of oscillations. Just as grandfather clocks use oscillations of a pendulum to measure time, atomic clocks define a second as 9,192,631,770 microwave oscillations of a cesium atom as it absorbs microwave radiation of a specific frequency.Many modern atomic clocks use oscillations of strontium atoms rather than cesium to measure time; the most precise of these is accurate to within 1/15,000,000,000 of a second. This means that, even if it had been running since the dawn of time around 13.8 billion years ago, the clock still wouldn’t have lost or gained a full second. Yet, for the majority of atomic clocks, which are used to keep Universal Coordinated Time (UTC) from positions around the globe and make sure our cell phones, computers and GPS tech is synchronized, there is still some room for improvement.That’s because the …

Article Attribution | Read More at Article Source

[mwai_chat context=”Let’s have a discussion about this article:nnThe use of a special type of atom could make even the most advanced atomic clocks more precise, scientists believe.If confirmed, this breakthrough that could lead to more accurate GPS systems and better atomic clocks for use in space travel — it could even lead to devices that can detect earthquakes and volcanic eruptions with a higher level of accuracy. And fascinatingly, one of the researchers behind the development has a familiar name, based on a fitting family legacy rooted in the cutting edge of atomic science: Eliot Bohr. He’s Neils Bohr’s great-grandson.Related: Atomic clocks on Earth could reveal secrets about dark matter across the universeOf all the units humanity uses for measurement, the most precisely defined is the second, a fundamental unit of time. Crucial to this and all types of time measurements throughout history are different kinds of oscillations. Just as grandfather clocks use oscillations of a pendulum to measure time, atomic clocks define a second as 9,192,631,770 microwave oscillations of a cesium atom as it absorbs microwave radiation of a specific frequency.Many modern atomic clocks use oscillations of strontium atoms rather than cesium to measure time; the most precise of these is accurate to within 1/15,000,000,000 of a second. This means that, even if it had been running since the dawn of time around 13.8 billion years ago, the clock still wouldn’t have lost or gained a full second. Yet, for the majority of atomic clocks, which are used to keep Universal Coordinated Time (UTC) from positions around the globe and make sure our cell phones, computers and GPS tech is synchronized, there is still some room for improvement.That’s because the …nnDiscussion:nn” ai_name=”RocketNews AI: ” start_sentence=”Can I tell you more about this article?” text_input_placeholder=”Type ‘Yes'”]
Share This