Researchers find a tiny organism has the power to reduce a persistent greenhouse gas in farm fields

by | May 29, 2024 | Science

In the world of greenhouse gas emissions, carbon dioxide gets most of the blame. But tiny organisms that flourish in the world’s farm fields emit a far more potent gas, nitrous oxide, and scientists have long sought a way to address it.Now some researchers think they’ve found a bacteria that can help. Writing in this week’s Nature, they say extensive lab and field trials showed the naturally derived bacteria reduced the nitrous oxide without disrupting other microbes in the soil. It also survived well in soil and would be relatively cheap to produce.“I think that the avenue that we have opened here, it opens up for a number of new possibilities in bioengineering of the farmed soil,” said Lars Bakken, a professor at the Norwegian University of Life Sciences and one of the authors of the study.A pound of nitrous oxide — better known as laughing gas, the stuff that relaxes people in the dentist’s chair — can warm the atmosphere 265 times more than a pound of carbon dioxide, and it can persist in the atmosphere for more than a century. Farmers’ heavy use of nitrogen fertilizer drives up the amount produced in soil, and in 2022 it accounted for 6% of all U.S. greenhouse gas emissions from human activities, according to the Environmental Protection Agency.Reducing fertilizer use can help, but crop yields would eventually fall.That’s a big problem in agriculture, “so the fact that they ha …

Article Attribution | Read More at Article Source

[mwai_chat context=”Let’s have a discussion about this article:nnIn the world of greenhouse gas emissions, carbon dioxide gets most of the blame. But tiny organisms that flourish in the world’s farm fields emit a far more potent gas, nitrous oxide, and scientists have long sought a way to address it.Now some researchers think they’ve found a bacteria that can help. Writing in this week’s Nature, they say extensive lab and field trials showed the naturally derived bacteria reduced the nitrous oxide without disrupting other microbes in the soil. It also survived well in soil and would be relatively cheap to produce.“I think that the avenue that we have opened here, it opens up for a number of new possibilities in bioengineering of the farmed soil,” said Lars Bakken, a professor at the Norwegian University of Life Sciences and one of the authors of the study.A pound of nitrous oxide — better known as laughing gas, the stuff that relaxes people in the dentist’s chair — can warm the atmosphere 265 times more than a pound of carbon dioxide, and it can persist in the atmosphere for more than a century. Farmers’ heavy use of nitrogen fertilizer drives up the amount produced in soil, and in 2022 it accounted for 6% of all U.S. greenhouse gas emissions from human activities, according to the Environmental Protection Agency.Reducing fertilizer use can help, but crop yields would eventually fall.That’s a big problem in agriculture, “so the fact that they ha …nnDiscussion:nn” ai_name=”RocketNews AI: ” start_sentence=”Can I tell you more about this article?” text_input_placeholder=”Type ‘Yes'”]
Share This